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FINITE ELEMENT MODELLING OF FREE 
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SUMMARY 

Internal mixers are used extensively in industry for mixing the components of rubber compounds. In these 
operations, in order to achieve effective mixing, the mixer chamber is always partially filled. This inevitably 
results in the appearance of multiple free surfaces in flow fields inside rubber mixer chambers. Mathematical 
modelling of such a flow regime is not a simple task and requires a great deal of effort. Traditional free surface 
flow-modelling techniques, which are mainly based on the use of volume-of-fluid or pseudo-density approaches 
in an Eulerian framework, are not flexible enough to cope with this problem. In this paper we describe a new 
method for the numerical modelling of free surface flows. In this method the pseudo-density approach is 
extended to a special Lagrangian framework along the trajectories of the fluid particles. We show that the 
developed scheme can very effectively simulate viscoelastic free surface flows encountered in rubber-mixing 
processes. 
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INTRODUCTION 

Batch internal mixers are extensively used to mix natural or synthetic rubbers with particulate fillers 
such as carbon black and other additives. The mixing process is an important part in the manufacture 
of rubber compounds with desirable properties. To achieve efficient mixing, internal mixers are 
always used partially filled, with fill factors sometimes as low as 60 per cent of the total mixer 
volume. The resulting flow inside the rubber mixer is thus a free surface regime. Therefore the 
mathematical modelling of rubber mixing depends on the successful simulation of a viscoelastic flow 
field with random free surfaces. 

The first technique which was extensively used to model free surface flow regimes, associated with 
processes such as mould filling and metal casting, was based on an approach known as the volume-of- 
fluid (VOF) method. The original technique was developed in Los Alamos Scientific Laboratories 
(U.S.A.) and is the basis of the well-known SOLA-VOF package.' Other investigators have extended 
the method and applied it to a variety of The VOF technique uses the finite difference 
method and its application in problems involving complicated geometries is not straightforward. An 
alternative version of this method based on the finite 'element technique has also been developed. 
Owing to the complicated nature of the volume-of-fluid method, however, the finite element version 
of it is only applied to solve simple  problem^.^ 
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Another technique which has been developed in recent years is based on treating a free surface 
flow field as a two-phase system. In such a system the fluid-filled regions are assumed to be one phase 
and the rest of the flow domain, separated by the free surface boundary, is considered as another 
phase. In order to model a flow field in this way, artificial physical parameters must be used outside 
the real fluid phase and thus the scheme is called the pseudo-density m e t h ~ d . ~  From a practical point 
of view the pseudo-density method offers more flexibility than the VOF scheme, but its effectiveness 
is restricted by the necessity of using artificial physical parameters for void sections of the domain. 
An additional problem in the pseudo-density method is the numerical instability caused by the use of 
arbitrary artificial physical parameters. In any given problem these values should be selected after 
trial-and-error procedures in order to avoid unstable solutions. 

In both the above-mentioned techniques a surface location function is defined and in conjunction 
with the flow equations an additional transport equation in terms of this function is solved. Essentially 
the surface location equation describes the movement and deformation of the free surface and is a 
pure convection equation (i.e. a hyperbolic PDE). In general in an Eulerian framework the numerical 
solution of the hyperbolic equations results in oscillatory solutions unless some artificial damping 
technique is used. The use of artificial damping methods reduces the accuracy of the obtained results 
and it is desirable to develop methods which avoid such a necessity. 

In this paper we describe a free surface flow-modelling technique which is based on the finite 
element solution of the model equations in a Lagrangian framework defined along the trajectories of 
the fluid particles. The main advantage of this method is that since we are using a Lagrangian 
framework, the convection terms in the model equations are eliminated and especially the free 
surface location equation is reduced to a simple time derivative. Thus the solution of the free surface 
function equation in our model only requires an updating of the previous position of the free surface 
along the trajectories of the fluid particles. The novel aspect of our model is that we do not treat the 
flow domain as a two-phase system and only parts of the flow field which are full of fluid at any given 
time are included in the solution scheme. Thus there is no need to use artificial physical parameters in 
this method. The applicability and accuracy of the technique are demonstrated by comparisons 
between simulated results and experimentally observed free surfaces in a flow rig which is analogous 
to an internal rubber mixer. 

MATHEMATICAL MODEL 

Consider a two-dimensional flow field. Using an Eulerian co-ordinate system (x. y ) ,  in the absence of 
body forces the components of the equation of motion representing the transient creeping flow of an 
incompressible fluid are given by 

where p is the constant fluid density, v, and vy are the components of the velocity vector, p is the 
pressure and z,,, etc. are the components of the extra stress tensor. 

The continuity equation for this type of flow is normally given by the expression of a divergence- 
free velocity field. In the present work, however, the following equation, which represents the mass 
continuity for a slightly compressible fluid, is adopted: 
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where c is the speed of sound in the fluid. The use of the above equation is more convenient, because 
in this case it is possible to use equal- order interpolation functions for velocity and pressure in the 
finite element solution scheme without violating the LBB stability condition.6 

In the present model the components of the constitutive equation associated with the flow of a 
viscoelastic fluid such as rubber are given by 

where A is the Maxwell relaxation time and T,, etc. are the components of the Maxwell stress 

P T = - ~ + T .  1 
The total stress in the flow field is thus given by 

(4) 

U = - p S + 7 ,  ( 5 )  

where S is the unit second-order tensor. The variable fluid viscosity p is given by the Carreau 
equation' 

where PO is the material consistency coefficient, n is a power-law index and y is the strain rate given 
by 

1 12 

Y = [ . ( 3 2 + 2 ( 3 2 + ( % + 3 2 ]  . (7) 

In conjunction with equations (1x7 )  for a free surface flow we consider the free surface continuity 
equation 

where F is a material density function which has a value equal to unity in filled parts of the domain 
and zero outside the free surface. On the free surface itself this function has a value between zero and 
unity. A mathematical procedure for the determination of an optimum value for F on the free surface 
is described later in this paper. 

All the model equations in the present work are given in an Eulerian co-ordinate system. Their 
finite element solution is, however, based on a new strategy which uses a combination of Eulerian and 
Lagrangian approaches. The Lagrangian framework in which equations (3) and (8) are solved is 
constructed by the determination of the fluid particle trajectories in the flow field. 

DETERMINATION OF FLUID PARTICLE TRAJECTORIES 

The position vector of a material point P in a flow field can be given as the function 

x = f(P, t ) ,  (9) 
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where t is the current time. A specific position at a chosen (reference) time identifies a particular point 
and we have 

x = f(P, P) .  (10) 
Any single point occupies only one position at any given time and therefore the above function with 
respect to P is invertible, i.e. 

P = f-'(x, t'). 

x = f[f-'(x, P);  t ]  = X(x, t'; t ) .  

(1 1) 
Substituting from equation (I  1) into equation (9), we get 

(12) 
If the current time t coincides with the reference time t', then the current and reference positions will 
also coincide and we may write 

X(x,  P ;  P )  = x. (13) 
In a given velocity field u = u(x, P) the motion of a material point is described by the equation 

for which the initial conditions are defined by equation (13). We use the described general 
kinematical remarks to derive a relationship for the determination of the starting points of the fluid 
particle trajectories in a flow field. 

At a given time t, the nth position of a material point, X", is found by replacing t in equation (12) 
with t,. At the next instant t,+, we denote the position of the same point by x. Thus the distance 
which the considered point has moved can be found by integrating equation (14) between t ,  and t f l+ l .  
This gives 

X - x" = J::" u[X(t) ,  tldt. 

Using the mean value theorem for definite integrals, we get 

x - X" = u[X(te) ,  te]At,, (16) 

where At, = tfl+l - t, and 8 has a value between zero and unity. By Taylor series expansion the 
velocity function in the neighbourhood of point (x, t,) is given as 

(17) 

The second and third terms on the right-hand side of equation (17) are approximated using the 
available information at each time step by backward differences: 

~ [ X ( t e > ,  tel = U ( X ,  tJ + atu(x, t,)(te - t,) + WX, t f l ) [x( t , )  - X I .  

te - t,, = $At, ,  (19) 
(20) X(te) - x w 4 [X(t , )  - X I .  

We substitute from equations (1 8H20) into equation (1 7) and then in turn we substitute the resulting 
relationship into equation (16). After rearranging, we obtain 
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where 6 is the Kronecker delta. Thus, if in a flow domain the velocity fields at times tn- ,  and t,, are 
known, using equation (21), the global co-ordinates (i.e. X) of individual starting points of fluid 
particle trajectories passing through fixed points with given co-ordinates (x) can be found. In practice 
these fixed positions are selected to correspond to those nodal points where we wish to obtain the flow 
field data. 

SOLUTION STRATEGY 

The solution strategy used in the present work can be summarized by the following steps. 

Step 1 

The entire domain of interest is first discretized into a mesh of finite elements in the normal 
manner. This mesh is called the ‘fixed mesh’. In the fixed mesh those elements which include at least 
one ‘active node’ are said to be active. The mesh of all active elements is called the ‘current flow 
domain’ (Figure 1). The active nodes are those for which 0.4 < F < 1, where F is the free surface 
function described by equation (8). The upper limit of this function is chosen by definition and the 
reason for choosing 0.4 as its lower limit is explained later. 

Step 2 

Using the fixed mesh data, an array is prepared which includes the numbers of all elements 
containing a given node. We call this array the ‘location array’. The numbers of nodes located on the 
exterior boundary of the fixed mesh are also stored in a separate array called the ‘boundary node 
array’. 

Step 3 

A set of appropriate initial values for the velocity, pressure and extra stress fields is assumed. At 
this stage the entire domain is considered (i.e. the current flow domain is the same as the fixed mesh) 
and the initial conditions are given in all nodal points. 

Step 4 

The time variable is updated, incrementing it by At. 

Figure 1 .  Current flow domain, active elements and examples of fluid particle paths 
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Step 5 

Flow equations (1) and (2) are solved on the current domain to obtain the current values of the 
velocity and pressure fields, using the old time step values of the extra stress field. We use a modified 
version of the Taylor-Galerkin method to carry out this step. 

Step 6 

Using the co-ordinates of the nodal points in the current flow domain (x), the velocity field 
obtained in Step 4 (u,) and the old velocity values (u,-~), the starting points of the fluid particle 
trajectories (X(t , ) )  (called feet) passing through the nodal points are found via equation (21). 

Step 7 

For each interior node in the current flow domain (i.e. those nodes which are not on the boundary 
of the fixed mesh) the location array is searched to find inside which element the foot of the fluid 
particle trajectory passing through it (found in Step 6) is located. 

The search procedure is based on the solution of the set of non-linear algebraic equations 

The unknowns here are the local co-ordinates of the foot. Thus, by inserting the found global co- 
ordinates of the foot in the left-hand side of equation (22) and the global co-ordinates of the nodal 
points of a given element in the right-hand side of equation (22), a set of 2 x 2 non-linear equations is 
constructed and solved using the Newton-Raphson method. If the foot is inside the selected element, 
then for a quadrilateral element the values of the local co-ordinates must be between - 1 and + 1 
( -  1 < 5 ,  q < + 1). For other types of elements, corresponding appropriate criteria must be 
adopted. 

This search at first is confined to the layer of elements containing the node under consideration. If it 
is found that the starting point of the trajectory passing through the node is not within any of these 
elements, then the search is extended to the next layer adjacent to them. In the case where the 
trajectory’s foot is not located within these next layers, then the time increment is reduced and Steps 
5-7 are repeated. 

Step 8 

After identifying the starting points of the particle trajectories in Step 6 and the elements within 
which they are located in Step 7, the function F and the stresses at these feet are found by 
interpolating their old time step nodal values. For nodes on the exterior boundary of the ‘fixed mesh’ 
(stored in the ‘boundary node array’), which may be part of the ‘current flow domain’, the passing 
trajectory may be tangential to the domain boundary (Figure 1). In this case the foot being sought will 
be located outside the ‘fixed mesh’ and instead of interpolating nodal values of F, etc., an 
extrapolation procedure must be used. 

Step 9 

The interpolated values of F and the stresses calculated in Step 8 (stresses are recalculated by 
converting from a fixed to a convected co-ordinate system, via equation (35) given in the next 
section) are used as initial conditions and current values of these unknowns are found by solving 
equations (3) and (8) together with the auxiliary equations (4), (6) and (7). The finite element solution 
technique used in this step is a new method based on the application of the Reynolds transport 



FREE SURFACE VISCOELASTIC FLOWS 1123 

theorem to derive working equations in a Lagrangian framework which corresponds to the 
trajectories of the fluid particles. The details of the development of the working equations of this 
scheme are described in the next section. 

Step I0 

Using updated values of the free surface function, the new active nodes are identified and the 
current flow domain is updated. The updating of the current flow domain is carried out by the addition 
of new active elements to the previous domain and the elimination of those elements which no longer 
contain at least one active node. 

Step I1 

are terminated; otherwise Steps 3-10 are repeated. 
If the current time has reached the final time required for the flow simulation, then the calculations 

WORKING EQUATIONS OF SOLUTION SCHEME 

The working equations of the present mathematical model consist of two distinct sets. 
The first set is derived from the flow and continuity equations (i.e. equations (1) and (2)) in an 

Eulerian framework corresponding to the 'current flow domain'. We use a modified version of the 
previously reported Taylor-Galerkin method for slightly compressible flow6 in which the time 
increment in the Taylor series expansion is chosen to be equal to 9At. This selection makes the 
scheme flexible and, by using different values of 0 < 8 < 1, we can control the amount of 
upwinding required for smooth solutions. The derivation procedure for this set is routine and here we 
only give the final forms of the working equations representing the momentum and continuity 
equations: 

where 
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The second set of working equations in the present model is derived using a Lagrangian approach. 
We first consider equation (8) which gives the location of the free surface in terms of the contours of 
F ,  the material density function. In order to develop a Galerkin finite element solution for this 
equation in a moving mesh, we start with the time derivative 

where SZ, describes a moving solution domain which changes with respect to time and 

F = C N j F j .  

Using the Reynolds transport theorem, the above integral can be written as 

On the RHS of equation (29) the fist  integral describes the changes with time in the function itself 
and the second integral is representative of changes due to the movement of the solution domain. As 
explained in the previous section, in the present scheme the deformation of the mesh and the changes 
in the function F along the predetermined particle trajectories are considered. Every fluid particle is 
the same along its trajectory and NI, which is a geometrical function and does not explicitly depend 
on time, remains unchanged in a convective framework. Therefore DNI/Dt = 0, and since D F / D f  = 0 
(equation (8)) and V * u = 0 for an incompressible fluid, then equation (29) gives 

After integration with respect 

In the finite element solution scheme the trial functions are replaced by the interpolation hc t ions  
and the unknowns are given in terms of their nodal values. This leads to the derivation of the working 
equation corresponding to the free surface tracking in the present scheme as 

J J 

where FJ" is the old time step value of the material density function at the foot of the particle 
trajectory passing through node J at the current time step n + 1 and 

E P 

The outlined method makes it unnecessary to modify the interpolation functions in the finite element 
scheme for the Lagrangian approach. This is in contrast with previously reported methods used to 
develop finite element solutions for fluid flow problems in Lagrangian frame~orks.8~~ 

The second equation in our mathematical model which is solved in a Lagrangian framework is the 
rheological equation (3) which describes the stress and rate- of-strain relationships for a viscoelastic 
fluid. In the convected co-ordinate system adopted here the metic tensor is defined as 

[dk(t)l2 = y,.(t)dl'dp, (33) 
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with 

axk  axm 
ax[ axr h 7  

y.. = --g (34) 

where gh are the components of the metric of the reference co-ordinate system (for Cartesian 
co-ordinates g h  = 6,). Let us denote the components of the stress tensor as 

In the convected co-ordinate system the Maxwell equation (i.e. equation (3)) can be written aslo 

(36) 
m + n  i j - P  - - y .  ij 

A 
The above equation shows that in the convective co-ordinate system the components of the 
rheological equation are decoupled. Furthermore, in contrast with the Eulerian system, the convective 
terms in this equation are zero. We consider the finite element weighted residual statement of 
equation (36), 

which after discretization and application of the &method gives the required working equation for the 
calculation of the stress components as 

(fiy)" is found by interpolating existing nodal values at the old time step and then transforming the 
found value to the convected co-ordinate system. The calculation of the components yq  and (fi?)" 
involve the first-order derivatives of the co-ordinate transformation induced by the flow. This gives 
the measure of deformation experienced by a volume of fluid between time steps n and n + 1 (Figure 
2). In the present model the geometrical transformation is along particle trajectories, and since the 
local co-ordinates of a given particle are independent of time, these derivatives are thus given as 

axl ax' a t  ax' aq 
axi a t  a x -  q a ~ . .  +--7. - = _- (39) 

In order to preserve the smoothness of the described transformation in the finite element solution, we 
need to use the interpolation functions with continuous first-order derivatives. Thus in the present 
work we use C' isoparametric Hermite elements''-'3 to satisfy this requirement. We note that for 
non-elastic fluids the rheological equation is much simpler and there is no need to formulate and 
solve separate equations for the stresses. Thus for generalized Newtonian fluids, for example, free 
surface flows can be very conveniently simulated with our method without using Hermite elements. 
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"3 
X2 

Figure 2. Co-ordinate transformation between fixed and convective systems 

DETERMINATION OF OPTIMUM VALUE OF MATERIAL DENSITY FUNCTION AT FREE 
SURFACE 

As explained previously, the location of the free surface in the present scheme is determined by the 
solution of equation (8) in a convective co-ordmate system. The contour corresponding to F = 0-4 is 
the line determining the free surface boundary in the flow domain. The given value for the material 
density function is considered to be an optimum cut-off constant to distinguish between filled and 
void sections and is found in the following manner. 

The main objective in free surface tracking is to determine how far the fluid front is advanced or 
retreated during a given time interval. This distance in any case is equal to the fluid velocity times the 
time interval. In a finite element context where the solution domain is discretized into elements, if this 
product is small in any section, then from one time step to the next the moving fluid front will still 
remain inside the same layer of elements. Eventually the front will move outside the current element 
boundaries and a new layer of active elements should be added to the current domain. Thus the 
number of steps, n,, after which the current flow domain should be adjusted (by the addition or 
subtraction of a layer of elements) can be found as 

hlv  n,=-, 
At 

where h is the element size and v is the velocity. In a distorted non-uniform mesh with variable 
velocity field it is not convenient to calculate the number of steps required for mesh adjustment using 
the above relationship. On the other hand, the solution of the free surface equation (8) at each time 
step gives the nodal value of F. If the fluid is receding from a node, this value will drop; if it is 
advancing, the value will rise. Since the number of steps required to include (or exclude) a node and 
the new layer of elements to which it belongs should be equal to n,, we need to find a value of F 
which satisfies the following criteria: for forward flow of the fluid, 
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for backward flow of the fluid, 

Fc, 2 F;" and F;"-' > Fcr. 

In the above inequalities, F;" and F;"-l represent respectively the values of the material density 
function at a boundary node I after n, and n, - 1 movements of the approaching free surface line 
within the element which contains that node. We elucidate this point in Figure 3, which shows part of 
the current domain with a free surface boundary at a given time. The value of F at node I - 1 in this 
figure at this time has exceeded its critical value and thus a new layer of elements such as the element 
(e) is added to the current domain. At node I the value of F at this time is zero. We consider the case 
when the fluid is approaching this node. After one time step the new value of F at node I is calculated. 
If this is less than the critical value of F, the domain at this part is kept as before and the calculations 
are repeated for another time interval; otherwise a new layer of elements is added to it. The number of 
steps which it may take to make such an adjustment necessary depends on the velocity of the fluid 
and the chosen time interval. A suitable value of the material density function should make the 
number of calculations required between successive mesh adjustments equal to n described in 
equation (40). The procedure to find such a constant between zero and unity is shown in Figure 3. The 
analogous situation for a retreating flow is shown in Figure 4. 

The following analysis based on the generalization of Figures 3 and 4 yields the optimum value of 
F, which is the same for both flow situations. 

In Figure 3 the positions of the points C, D, etc. on the F-axis correspond to the values of the 
material density function at node I at a given time. These values are found using interpolations in the 
finite element solution. Thus straight lines such as AC, which are constructed by joining similar 
positions for node I- 1 with their counterparts for node 
interpolation functions on a vertical plane. After the first step 
function at node I - 1 we can write 

F - F ; - ~  - X - X ~  - 
1 - F;-, XI-1 -x, ' 

I, represent the projections of the 
of calculation of the material density 

which is the equation of the line 0 1 0 2  (Figure 3). In order to find the point A, we substitute xl + 6 for 
x in the above equation. Thus 

or 

where n is the number of steps given by equation (40) which was used to adjust the mesh at the 
previous time. A recurrence formula based on equation (43) is constructed: 

Using the formula for geometric progression, we can write 
k 

FF-, = 1 - (1 -:) ( 1  - f l - l ) .  (45) 
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0 . 4  

0 0  

Figure 3. Forward-moving free surface with corresponding stepwise change in finite element interpolations 

Similarly, for node I we write the equation of the line AC (Figure 3) at the kth step as 

Using a procedure analogous to the one given above, for a point such as C located on the current 
element edge we substitute the (k+ 1)th value of F into equation (46) to obtain the location of the 
next point on that edge. This leads to the derivation of the recurrence formula 

Inserting a wide range of step numbers (n, between 1 and lo), the positions of points A, B and C, D 
(Figure 3) were found from the recurrence formulae (45) and (47) respectively. Whenever k +  1 in 
equation (47) becomes equal to the inserted value n,, a new layer of elements should be added to the 
current domain (free surface boundary moving forward). It was found that choosing F = 0.4 contours 
as the boundary between filled and void sections of the flow domain would always guarantee that for 
a step number one less than the inserted value the free surface would remain below the current flow 
domain edge. A similar analysis was conducted for a backward-moving free surface boundary and it 
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1 0  1 0  

0 4  0 4  

0 0  0 0  

Figure 4. Backward-moving free surface with corresponding stepwise change in finite element interpolations 

was again confirmed that F =  0.4 should be chosen as the free surface contour value. In this case, 
element layers with material density function value less than 0.4 should be eliminated from the 
current flow domain. 

COMPARISON OF NUMERICAL RESULTS AND EXPERIMENTAL DATA 

In order to validate the developed model, a complex flow visualization rig was constructed. Details of 
this rig and the developed experimental techniques will be published separately. In this paper, only a 
brief account of the basic structure of the rig is given. 

Essentially the experimental rig consisted of a rotating horizontal cylinder with an attached blade 
section. This section could be changed to provide experimental data for various types of blade 
geometry used in rubber mixing. The blade section had a uniform shape in the direction of the barrel 
axis to generate a flow domain which could be effectively considered as two- dimensional. Pressure 
transducers in the blade section gave the measured pressure at the tip and along the gap between the 
blade and barrel surfaces. The gap size between these two surfaces was adjustable. At the start of 
experiments the blade was moved away from the barrel and a band of rubber was wrapped around the 
cylinder. The blade was then brought close to the barrel surface. The flow generated by the rotation of 
the barrel resulted in free surface regimes before the blade tip and also at the exit from the narrow 
contraction. By using a video camera located at the side of the rig, free surface locations at various 
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Figure 5 .  Eulerian mesh of maximum flow domain 

times were recorded. These recordings were converted into free surface contours which can be 
directly compared with the model results. Figure 5 shows the finite element mesh of the maximum 
flow domain, which consists of a reservoir before the blade tip, a narrow gap between the blade and 
the barrel and a section at the exit side of the blade. The experimental rig geometry is the mirror 
image of a commercial internal rubber mixer and provides a complex domain for the direct 
comparison of numerical model results with the observed free surface locations and shapes in a 
viscoelastic flow field. 

Numerical model results for a rubber with a consistency coefficient of 5 x lo5 Pa s, a density of 
1 100 kg m-3 and a relaxation time of 0.54 s are compared with the observed free surfaces in Figures 
6(a)-(d). The creeping flow of rubber observed in these experiments can be considered as isothermal. 
The close agreement between model results and experimental data provides confirmation of the 
validity of the developed scheme. The small discrepancy between model results and experimental 
data can be attributed to factors such as the impossibility of producing exactly two-dimensional flow 
regimes during the experiments. It is interesting to note that the discrepancy between two sets of 
results remains small and unchanged after relatively long simulation times. This is in contrast with 
the model results produced using a traditional pseudo-density scheme on a fixed framework. The 
result of such a simulation for a free surface after 55 s from the start of flow is shown in Figure 7. The 
large discrepancy between simulated results and experimental evidence in this case confirms the 
unsuitability of using the traditional method for complex viscoelastic free surface flows. 

As a typical example, the simulated pressure field produced by the described model for 15 s after 
starting from a completely full reservoir is shown in Plate 1. The computed pressure fields, which can 
be used in mixer design calculations, are also in agreement with experimental observations. A full 
account of such a design procedure will be published separately. 

CONCLUSIONS 

A new technique based on the extension of the pseudo-density method to a special Lagrangian 
framework, constructed along the trajectories of the fluid particles, for the simulation of complicated 
free surface flows is presented. The developed method is applied to the simulation of an isothermal 
viscoelastic flow in a geometry analogous to an internal rubber mixer. The comparison between 
model results and experimental data confirms the validity of the adopted method. The application of 
the method to a non-isothermal non-elastic free surface flow presents no difficulties. The numerical 
simulation of a non-isothermal viscoelastic flow, however, involves complications which are 
independent of the free surface nature of the modelled regimes and thus is beyond the scope of the 
present paper. 
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Figure 6. Comparison of numerically simulated free surfaces with experimental data (a) 5 s, (b) 15 s, (c) 40 s and (d) 55 s after 
start of flow 
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Figure 7. Simulated free surface location using traditional pseudodensity method 
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